Ring Formation in Magnetically Subcritical Clouds and Multiple Star Formation
نویسنده
چکیده
We study numerically the ambipolar diffusion-driven evolution of nonrotating, magnetically subcritical, disk-like molecular clouds, assuming axisymmetry. Previous similar studies have concentrated on the formation of single magnetically supercritical cores at the cloud center, which collapse to form isolated stars. We show that, for a cloud with many Jeans masses and a relatively flat mass distribution near the center, a magnetically supercritical ring is produced instead. The supercritical ring contains a mass well above the Jeans limit. It is expected to break up, through both gravitational and possibly magnetic interchange instabilities, into a number of supercritical dense cores, whose dynamic collapse may give rise to a burst of star formation. Non-axisymmetric calculations are needed to follow in detail the expected ring fragmentation into multiple cores and the subsequent core evolution. Implications of our results on multiple star formation in general and the northwestern cluster of protostars in the Serpens molecular cloud core in particular are discussed. Subject headings: ISM: clouds — ISM: magnetic fields — MHD — stars: formation
منابع مشابه
Fragmentation of Magnetically Subcritical Clouds into Multiple Supercritical Cores and the Formation of Small Stellar Groups
Isolated low-mass stars are formed in dense cores of molecular clouds. In the standard picture, the cores are envisioned to condense out of strongly magnetized clouds through ambipolar diffusion. Most previous calculations based on this scenario are limited to axisymmetric cloud evolution leading to a single core, which collapses to form an isolated star or stellar system at the center. These c...
متن کاملQuiescent Cores and the Efficiency of Turbulence-accelerated, Magnetically Regulated Star Formation
The efficiency of star formation, defined as the ratio of the stellar to total (gas and stellar) mass, is observed to vary from a few percent in regions of dispersed star formation to about a third in clusterforming cores. This difference may reflect the relative importance of magnetic fields and turbulence in controlling star formation. We investigate the interplay between supersonic turbulenc...
متن کاملMagnetically Regulated Star Formation in Turbulent Clouds
We investigate numerically the combined effects of supersonic turbulence, strong magnetic fields and ambipolar diffusion on cloud evolution leading to star formation. We find that, in clouds that are initially magnetically subcritical, supersonic turbulence can speed up star formation, through enhanced ambipolar diffusion in shocks. The speedup overcomes a major objection to the standard scenar...
متن کاملNonaxisymmetric Evolution of Magnetically Subcritical Clouds: Bar Growth, Core Elongation, and Binary Formation
We have begun a systematic numerical study of the nonlinear growth of nonaxisymmetric perturbations during the ambipolar diffusion-driven evolution of initially magnetically subcritical molecular clouds, with an eye on the formation of binaries, multiple stellar systems and small clusters. In this initial study, we focus on the m = 2 (or bar) mode, which is shown to be unstable during the dynam...
متن کاملOn the Formation of Binary Stars and Small Stellar Groups in Magnetically Subcritical Clouds
In the standard scenario of isolated low-mass star formation, strongly magnetized molecular clouds are envisioned to condense gradually into cores, driven by ambipolar diffusion. Once the cores become magnetically supercritical, they collapse to form stars. Most previous studies based on this scenario are limited to axisymmetric calculations leading to single supercritical core formation. The a...
متن کامل